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Summary. We report the implementation of a Gaussian finite-nucleus model in the 
framework of the spin-free no-pair Hamiltonian obtained from the Douglas-Kroll  
transformation of the no-pair operator with external-field projectors. The finite 
nucleus regularizes the weak singularity of the wavefunction at the locations of the 
nuclei and provides a means for efficient exponent optimization using a spin- 
averaged relativistic one-component operator. We report and discuss basis sets for 
the gold atom obtained from various optimization procedures, making use of 
a point nucleus as well as employing various finite-nucleus models. 
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1 Introduction 

Computational models for atoms and molecules in the framework of the non- 
relativistic Schr6dinger equation in the Born-Oppenheimer approximation usually 
employ a point-nucleus model for the external-potential term that describes the 
attraction of the electrons by the nuclei. Although the nucleus in reality has, of 
course, some finite extension, this model is in general considered justified, because 
the diameter of the nucleus is of the order of some femtometres, whereas the 
electrons most of the time move at a much larger distance of the order of 
picometres u p t o  a few hundred picometres in the valence shell. Thus, the detailed 
charge distribution of the nucleus is expected to have negligible influence on the 
electronic energy and low-order moments of the electronic charge distribution. 
Moreover, a finite-nucleus model will necessarily have to introduce some assump- 
tions and parameters pertinent to the specific model  employed for the nuclear 
structure, and thus to some extent the well-defined mathematical structure of the 
point-nucleus model will be destroyed. 

* Dedicated to Prof. Dr. Werner Kutzelnigg on occasion of his sixtieth birthday 
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The situation is different for relativistic models of electronic structure theory. It 
is well known that the solution of the one-particle Dirac-Coulomb equation for 
a point-nucleus external potential exhibits a weak singularity at the origin [1]. This 
property requires special attention in the practical calculation of a many-electron 
system when relativistic effects become important, as is the case already in the first 
transition-metal row. For atoms, a well-established method is at hand, namely the 
Dirac-Hartree-Fock (DHF) method based on a multi-particle generalization of 
the Dirac-Coulomb equation [2, 3] or, more precisely, on second-quantized 
generalizations thereof [-4-6]. Usually, the problem of the weak singularity is 
handled in the corresponding computer codes [7, 8] by the introduction of 
a finite-nucleus model, although the fact that the DHF equations in the programs 
mentioned above are solved on a grid already provides a regularization mechanism 
that also permits to solve a point-nucleus model. 

Problems with the singularity are probably more prominent in an expansion 
approach to the solution of the DHF equations: A basis set optimization, say in 
a basis of Gaussian functions, will lead to basis functions with very high exponents, 
thus trying to mimick the divergence at the origin by means of very steep 
Gaussians. These are clearly non-physical and unwanted in a practical calculation, 
since "grid points" in the functional space are set in a region that is not important 
for the properties one is usually interested in, and thus, at best, computational 
effort is wasted. It has therefore been proposed that a finite-nucleus model be used 
also in DHF calculations carried out by means of basis expansion techniques [9], 
in particular in a basis of Gaussian functions [10-12]. Note that a suitable choice 
of the finite-nucleus model, e.g., a uniformly charged sphere, leads to a harmonic 
potential at the origin. Thus, we expect rapid convergence of the basis set expan- 
sion, since Gaussian functions provide the correct asymptotic behaviour and are 
therefore ideally adapted to the problem [3, 10, 13]. 

An approach alternative to DHF, particularly useful for molecules, is the 
reduction of the DHF equations or their second-quantized analogue to operate 
only on the electronic degrees of freedom [14, 15]. Depending on the scheme that is 
being used, diverse problems arise in the case of an external field effected by a point 
nucleus. 

In the Foldy-Wouthuysen approach [14], anj expansion in powers of the 
reciprocal velocity of light is carried out, leading toCi~ncreasingly singular operators 
[16], the lowest order of which is given by the so-called mass-velocity term 

p4 

Hmv -- 8m3c 2 , (1) 

~zeh 2 
HD -- 2m2c 2 p (r), (2) 

and the Darwin term 

p (r) denoting the nuclear charge distribution. The latter operator being itself 
extremely singular ifa point nucleus, i.e., the nuclear charge distribution p(r) -- 6(r), 
is used and the former one being not bounded from below, we have to face very 
unsatisfactory properties of the Foldy-Wouthuysen wavefunction, which have 
been investigated in detail by Kutzelnigg [17]. The individual terms exhibit 
considerable sensitivity to the model of the nucleus. This has been investigated for 
the expectation value of the Darwin term, using a Gaussian nucleus model [18], 
and also recently in a study that also pays attention to the influence of the nuclear 
model on the spin-orbit operator and the mass-velocity term [19]. 
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The Douglas-Kroll transformation [15] does not lead to singular operators like 
Eqs. (1) or (2), since an expansion of the relativistic free-particle energy operator 

E = x/pZc 2 + m2c 4, (3) 

which is the reason for the weird spectral properties of (1), is not attempted. Instead, 
Douglas and Kroll expand in powers of the external Coulomb potential, thus 
arriving at a sum of operators, each one not more singular at the origin than the 
Coulomb potential itself. The Douglas-Kroll-transformed Hamiltonian is thus 
suitable for practical calculations, making it easy to implement electron correlation 
in a spin-free formalism [20, 21] and also in approaches including spin-orbit 
coupling [22]. 

A straightforward basis set optimization with the spin-free no-pair operator, 
using a linear combination of atom-centered Gaussians to expand its solution, 
leads to high exponents very similar to the DHF case discussed above. In this 
publication we therefore describe the implementation of a finite-nucleus model in 
the framework of the Douglas-Kroll transformation. We take the gold atom as an 
example and develop a "relativistic" basis set, starting from a 17s 12p8d4fGaussian 
basis set optimized with the non-relativistic Schr6dinger Hamiltonian [23] by 
means of exponent optimization with the relativistic operator in combination with 
the finite-nucleus model. 

In the following section we briefly review the Douglas-Kroll transformation 
and the finite-nucleus model. We proceed to a description of our implementation of 
the required integrals and then present practical calculations, introducing the new 
basis set and comparing our findings with DHF results obtained with the GRASP 
code (General-Purpose Relativistic Atomic Structure Program) [8]. 

2 Theory 

2.1 The relativistic Hamiltonian 

We employ the spin-free no-pair Hamiltonian with external-field projectors, 
derived from the second-quantized no-pair Hamiltonian [6] by means of a 
Douglas-Kroll transformation E15]. Assuming that a spin-averaged description is 
appropriate for the case to be considered and that spin-orbit coupling may be 
treated by perturbation theory at a later stage, we obtain a Hamiltonian operating 
on a one-component (properly antisymmetrized) wavefunction: 

Hsf2  E E i +  Z sf • sf . . = Wef f (l, j ) ,  Veff(1)  "~- E (4)  
i i i<j 

with El the relativistic free-particle kinetic energy operator of Eq. (3), evaluated for 
the ith electron, and V~ff(i) and v~fff(i,j) the one- and two-partMe potential energy 
operators that include spin-free relativistic corrections. Since the relativistic correc- 
tions of the two-electron potential are not of importance in the present context and 
can be shown to be of negligible influence in the calculation of valence-shell 
energies of atoms [21], we neglect then in the sequel and rather consider one- 
electron corrections only, using 

Hsfl EEi+E Z ± = Veff  (z) --~ (5)  
i i i<j rii'j 

as the relativistic Hamiltonian. 
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Putting the velocity of light c - 1, the one-electron (nuclear attraction) poten- 
tial for electron i is given by 

sf " Zoee(0 = 

with 

and 

- -  eAi[V~,,t(i) + Ri  V~xtRilAi 

-- WSlf(i)EiWS[(i) - ½{(W~f) 2, Ei} , 

(6) 

(7) 

] Ei + m 
Ai i 2E, (8) 

P i  
Ri=Ei+----- ~ . (9) 

l'V~f(i) is an integral operator with kernel 

F~xt(pi, p;) 
Ei + El 

W'~f (p,, p'~) = A~(R~ - R;)A; (10) 

This operator is evaluated from the matrix elements of the external potential Vext(i ) 
between Gaussian functions by means of a matrix technique described elsewhere 
[211. Thus, the implementation of a finite-nucleus model requires modification of 
the one-electron Coulomb integrals only, which may subsequently be subjected to 
the matrix technique for the evaluation of V~fff. 

2.2 The f ini te-nucleus mode l  

There are several models for the charge distribution of the nucleus known from 
literature. Ishikawa [101 used a uniformly charged sphere with a certain prescribed 
radius R nuc of the dimension of a few femtometres. In the context of expansions into 
Gaussian orbitals it is, however, more convenient to use a Gaussian charge 
distribution for the nucleus [18, 111, normalized to integrate to the total nuclear 
charge and given by 

p(r) = e Z  e -"'2. (11) 

The decay parameter r/is to be connected with the nuclear radius via the standard 
deviation a of the Gaussian or the root-mean-square radius Rrms of the Gaussian. 
Matrix elements of the corresponding potential in a basis of Gaussian functions are 
readily evaluated, also in the multicentre case. We therefore choose the Gaussian 
finite-nucleus model in our development. 

The fixing of the width of the Gaussian is open to debate. Visser et al. [11] 
propose two methods: First, assume that the extent of the nucleus is given by the 
ansatz [24, 25, 71 

R = ro A1/3, (12) 

with A the atomic mass and ro = 2.27 x 10- 5, giving R in atomic units. We may 
then relate R with the standard deviation of the Gaussian by means o f  an 
adjustable parameter 7, R = 7a. 
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Second, equate the experimental root-mean-square radius R,n~ [26] to the rms 
radius of the Gaussian, leading to an expression for the exponent t/given by 

_3 to-uc~- 2 (13) ?] = 2 tat'~rms/ 

The integrals of the potential caused by a Gaussian charge distribution may be 
expressed in a form that makes it possible to use conventional two-electron integral 
routines for the calculation of its matrix elements between Gaussian functions 1-11]. 
However, in the case considered in the present paper, we prefer to reduce the 
required integrals directly to simple formulae for the one-electron integrals. 

The potential of a charge distribution given by Eq. (11) centred at a point P at 
a distance R from this distribution is given by 

e Z  
V(r) = - - -  ~(x/~r), (14) 

r 

where the error function • is defined by 

2fo • (x) = ~ e -t2 dt. (15) 

To evaluate the one-centre nuclear attraction using a finite-nucleus model making 
use of a Gaussian charge distribution, we have to calculate the integral 

I = ~)i(x)(oi(x) V(r) dax.  (16) 

The parameters li, ml, nl and e~ characterize the ith function in the Gaussian basis 
set: 

c/)i = Nix l lymizn 'e  -~`r2, r = ]x]. (17) 

Defining 2p = I1 + 12 + ml + m2 -t- nl + n2 and 6 = cq + e2, we employ polar 
coordinates, isolate the angular part J and obtain 

2N1N 2 ~o~ 
I = J .lo r2pe-~r2 

=- J" N 1 N z l p ( w / q ,  6). (19) 

With the result 

R e 6 >  - t/,Re 6 > 0, 1° (x /~ '6 )  - 26(6 + 1) 1/2' 

it is straightforward to get the working equations 

i i (x / /~ ,6)  _ w/q(36 + 2t/) 
462(6 + ~/)3/2' 

"f~ [156 z + 206~ + 8~2], 
/2(x/q, 6 ) -  863( 6 + rl) 5/2 

X//~ [10563 "-I- 21062r/ + 1686q 2 "-I- 48r/3] I3( ' , f  t~,6) = 1664(6 + q)7/z 

(20) 

(21) 

(22) 

(23) 
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N//~ /])9/2 [-94564 + 282063r/ + 30246272 I '*(x/~, 6)=  3265(6 + 

+ 17286r/3 + 384r/4] . (24) 

3 Results and discussion 

As a first application of the finite-nucleus model within our relativistic scheme we 
report an exponent optimization of a 17s12p8d4f basis set for the gold atom, 
optimized previously by means of a straightforward exponent variation at the 
non-relativistic SCF (self-consistent field)-Hartree-Fock level [23], making use of 
a procedure and an SCF code for atoms known from the literature [27-29]. The 
optimization proceeds by direct variation of exponents and a search for a minimum 
of the total energy by means of a fit of the calculated values to a polynomial. After 
several cycles over all single exponents, a multidimensional (numerical) determina- 
tion of the minimum is attempted. This process is repeated until the change in total 
energy is less than 10-5 Hartrees. 

In our instance we employ the same code, modified to comprise the spin-free 
no-pair operator with external-field projectors and the Gaussian finite-nucleus 
model as described in Sect. 2. We start our optimization with the nonrelativistic 
17s12p8d4f basis set published earlier, which we tabulate again for reference in 
Table 1, along with the results of the relativistic optimization. 

We use two different ansfitze for the exponent q in Eq. (12), the first one based 
on the experimental rms radius of the 197Au nucleus with R~xm~ = 5.3 fm being used 
for the optimization. The second value of R~mu~ ~ 6.36 fm corresponding to a 20% 
increase of the rms radius, has been provided in order to give a feeling for the 
influence of the nuclear radius. 

Moreover, we attempted an exponent optimization with the relativistic oper- 
ator and the point-nucleus model. In this instance it did not turn out possible to 
obtain a set of exponents describing a stationary point of the energy with respect to 
exponent variation, the total energy still decreasing in the third digit after the 
decimal point for the exponents given in Table 1. 

An inspection of this table shows that the exponent optimization procedure 
making use of the point nucleus indeed tries to describe a singularity at the origin 
within the restrictions of a finite basis set, as the highest exponents in the space of 
s functions developed to about 50 times the value we started out with. Clearly, this 
method of exponent optimization is not a feasible one, since it will not converge to 
a stage with an essentially stationary result. Moreover, as discussed in the introduc- 
tion, the large exponents are not required to describe the medium range of the wave 
function, which is determining the value of the energies, and also immaterial for 
such first-order properties that depend on a low (absolute) power of the distance 
from the nucleus, as many of the interesting properties do. 

On the other hand, the optimization procedure with the Gaussian nucleus 
converged to a set of exponents corresponding to a point with a, for practical 
purposes, stationary energy. The resulting exponents obtained with R~m~ = 5.3 fm 
are also given in Table 1. 

We observe that the inner (and outer) s exponents are larger than their 
non-relativistic counterparts, as one should expect from the general properties of 
a relativistic orbital, but in this instance only by a factor of 10 for the highest 
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Table 1. Exponents of the (17s12p8d4f) basis set for the gold atom 

Non-relativistic Relativistic Relativistic 
optimization optimization optimization 
point nucleus point nucleus Gaussian nucleus 

s exponents 

3095420.0 
446260.0 

99928.8 
28274.9 

9358.39 
3491.38 
1429.50 
621.277 
233.439 
113.614 
58.4805 
26.2455 
13.3527 
5.15347 
1.64510 
0.730473 
0.054579 

p exponents 

23072.8 
5459.12 
1773.84 
677.791 
285.457 
127.800 
55.2681 
26.1332 
10.7993 
4.95651 
1.56922 
0.580380 

d exponents 

816.722 
243.203 
90.5378 
36.8619 
14.0038 
5.54660 
1.51102 
0.429674 

fexponents 

86.8244 
27.7504 

9.91205 
3.33817 

166643000.0 29077400.0 
17991400.0 4665930.0 
3180390.0 1059530.0 
715743.0 281273.0 
187598.0 84311.2 
54984.4 27756.7 
17640.7 9845.95 
6088.72 3713.94 
2229.58 1482.82 

855.227 627.142 
286.375 241.530 
122.841 108.298 
37.2398 34.6885 
19.9257 16.49687 
6.16327 6.091290 
1.08749 1.087940 
0.078608 0.086209 

134701.0 113988.0 
20969.3 18303.6 
5072.08 4556.52 
1561.95 1434.59 
559.21 520.969 
220.278 206.811 

91.4179 85.0870 
38.6095 36.6366 
16.1506 15.0214 
6.65501 6.39604 
1.96030 1.87306 
0.737265 0.704253 

933.897 944.088 
267.029 268.492 

97.077 97.1813 
38.8019 38.7422 
14.5881 14.5075 
5.70114 5.67105 
1.52155 1.51099 
0.42022 0.416578 

85.719 85.7235 
27.0547 27.0580 

9.55937 9.56122 
3.16991 3.17190 
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exponent. We expect higher exponents in the relativistic finite-nucleus case, since 
the relativistic s orbital in this instance has considerably larger amplitude for small 
distances from the nucleus than its nonrelativistic counterpart [9]. The p exponents 
are likewise shifted corresponding to a tighter charge distribution, whereas the 
outer d andfexponents describe a slightly more diffuse charge distribution than in 
the non-relativistic case, again in line with the expectations derived from known 
relativistic effects on orbital radii. 

The total energies, orbital energies, (r 2) and (r -1) expectation values are 
given for some inner-shell and the valence-shell orbitals in Tables 2-4. The data 
obtained from the GRASP program will be used as a benchmark. Note that the 
point-nucleus values differ slightly from those published in [23], since in this 
publication a molecular code making use of six-component cartesian d functions 
and ten-component cartesianffunctions has been employed, whereas in the present 
case contaminants are not present. 

A comparison of the numerical nonrelativistic results with the basis set results 
shows that despite a quite satisfactory total energy, orbital energies and charge 
distributions calculated with the optimized 17s12p8d4f non-relativistic point- 
nucleus basis set [23] show errors of the order of 10%, which is quite unacceptable. 
This deficiency may be traced to inflexibility in the valence shell, in particular of 
the d and f symmetries. From Table 2 we find that already the inclusion of 
a semidiffuse d function with exponent 0.11 bohr- 2 leads to considerable improve- 
ment. This function may not be obtained by optimization of the total energy at the 
Hartree-Fock level, because its influence on the total energy is negligible, and 
a straightforward optimization with an additional d function rather shifts the 
values of the d space uniformly to higher values, which leads to lower energies for 
the inner-shell d orbitals. 

The semidiffuse function has instead been determined by optimizing the cor- 
related ground state energy of the Au 2S state, and in fact it has been known for 
a long time that for satisfactory calculations on transition metals a semidiffuse 
d function, often dubbed Hay's d function [30], has to be included at the correlated 
level. This function turns out to be of importance even at the SCF level, and its 
large (indirect) influence even on the 6s shell is remarkable. The orbital energies 
(except for the 4f shell, which still lacks some flexibility) are now in very good 
agreement (better than 1%) with the benchmark results. 

The (r2)6s expectation value, however, still indicates deficiencies in the s shell. 
This is also reflected in the ionization potentials and electron affinities calculated 
with this basis set [23]. In order to overcome these problems, we introduced in 
a recent paper [31] a more flexible basis set, which is obtained from the nonrelativ- 
istic one given in Table 1 by deleting all functions with exponents less than 
3 bohr-2 and augmenting this set by an approximately even-tempered series of 
exponents providing a flexible valence shell. The latter exponents are given in 
Table 5, and we have included also results for this extended basis set in Tables 2-4. 
It is obvious that this basis set (dubbed NRPx) shows excellent agreement with 
GRASP results. 

We employ the same recipe as described above to generate extended basis sets RPx 
and RGx for the optimization carried out in the framework of a relativistic point 
nucleus and a relativistic Gaussian nucleus. The nonrelativistic calculations employing 
a Gaussian nucleus show practically no difference to the point-nucleus results, cor- 
roborating the expectation that a point-nucleus theory is quite adequate in this case. 

We now turn to a discussion of the result obtained from relativistic scalar 
calculations. The relativistic contraction of the s and p orbitals and the expansion 
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Table 5. Valence-shell exponents for the extended basis sets 

197 

s functions p functions d functions ffunctions 

2.100 2.250 2.200 
0.840 1.000 0.880 
0.340 0.455 0.350 
0.140 0.210 0.140 
0.050 0.100 0.056 
0.022 0.046 
0.010 0.020 

1.100 
0.420 
0.170 

of the d and f shells is reproduced in all cases, comparing the corresponding 
calculations for a fixed basis set, but again the magnitude of the effect is under- 
estimated using the RP and RG basis sets due to basis set inflexibility. This is 
mirrored especially in the poor result obtained with the relativistic point nucleus 
basis set in the nonrelativistic calculation, reflecting the optimization for a much 
more compact charge distribution. Again, the situation is much improved by 
inclusion of Hay's d function. The ( rZ)5d value is now excellent, but (r-1)sa 
overshoots and shows, in line with the (r2)6s result, that an extended basis set is 
required for quantitative agreement. Note, however, that (r 2)6s is well described by 
the RP basis set. The extended basis sets with either type of core basis set 
(NRPx, RPx, RGx) all lead to very good agreement with the benchmark results in 
the valence shell, and it is in fact not evident which one is superior. 

For core orbitals the (r 2) is is too small in all cases, and (r-1)is  and (r-1)2 s 
are too large with either basis set. This result (and the comparatively large 
discrepancies for the DHF total energies and the inner-shell orbital energies) is due 
to the fact that the two-electron terms have not been corrected in the present 
calculation. This may be done in the framework of the Douglas-Kroll transforma- 
tion, but will not change the valence-shell results considerably [21]. 

Finally, turning to the finite-nucleus calculations, we find results similar to 
those obtained for the point-nucleus calculations. The only notable exception is 
(r2)6~, which for the RG set is slightly different in both cases due to basis set 
deficiencies. 

Summarizing our results, we find that for a flexible basis set the mode of 
optimization is immaterial. NRPx, PRx and RGx give all very good results. Of 
course, an optimization using the point nucleus is not advisable because of slow 
convergence and the development of unnecessarily high exponents, and thus for an 
optimization in the framework of a relativistic theory a finite nucleus should be 
used. Our results indicate, however, that a sufficiently flexible basis set based on 
a nonrelativistic exponent optimization is quite satisfactory. 

4 Conclusion 

The Gaussian nucleus model may be favourably used to devise a procedure for 
exponent optimization using the Douglas-Kroll-transformed no-pair Hamil- 
tonian. A point-nucleus model used in this context does not lead to a convergent 
optimization procedure and develops very high exponents, just as known from 
Dirac-Hartree-Fock calculations. 
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The 17sl2p8d4fbasis set as obtained from the optimization procedure does not 
provide enough flexibility to yield orbital energies and (r")  expectation values in 
satisfactory agreement with numerical (GRASP) benchmark calculations. We 
expect that this will be true until very large basis sets are used, because the 
important semidiffuse and diffuse functions are disfavoured by an optimization 
procedure based on the Hartree-Fock energy. 

We rather propose to build a flexible valence basis set by means of an 
even-tempered series of exponents starting with a suitable outer-core exponent 
obtained in the optimization procedure. This recipe also allows for inclusion of 
correlation functions, negative ion functions and Rydberg functions, as needed for 
post-SCF calculations. 

Proceeding along these lines, we obtained basis sets which yield values for 
valence shell data in very good agreement (better than 1%) with GRASP results. 
Inner-shell results in the relativistic case deteriorate because of the approximations 
that have been made, in particular the neglect of the relativistic correction of the 
two-electron integrals. 

The three extended basis sets obtained in this way from the nonrelativistic, 
relativistic point nucleus and relativistic Gaussian nucleus basis set lead to very 
similar results in the relativistic calculations. We thus conclude that for calcu- 
lations with the Douglas-Kroll-transformed no-pair Hamiltonian a relativistic 
optimization is not required (unless the valence basis set that can be afforded is 
small or only of medium size) and that a nonrelativistic basis set of moderate size 
for inner and outer core, augmented by a large and flexible valence-shell basis set, is 
sufficient to obtain valence orbital energies and (r")  expectation values as well as 
other properties depending on the valence shell with excellent accuracy. This is in 
line with previous findings [31]. Note, however, that relativistic contraction coeffi- 
cients are markedly different from their nonrelativistic counterparts and must be 
determined from a relativistic atomic SCF calculation. 
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