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Summary. We report the implementation of a Gaussian finite-nucleus model in the
framework of the spin-free no-pair Hamiltonian obtained from the Douglas—Kroll
transformation of the no-pair operator with external-field projectors. The finite
nucleus regularizes the weak singularity of the wavefunction at the locations of the
nuclei and provides a means for efficient exponent optimization using a spin-
averaged relativistic one-component operator. We report and discuss basis sets for
the gold atom obtained from various optimization procedures, making use of
a point nucleus as well as employing various finite-nucleus models.
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1 Introduction

Computational models for atoms and molecules in the framework of the non-
relativistic Schrodinger equation in the Born—-Oppenheimer approximation usually
employ a point-nucieus model for the external-potential term that describes the
attraction of the electrons by the nuclei. Although the nucleus in reality has, of
course, some finite extension, this model is in general considered justified, because
the diameter of the nucleus is of the order of some femtometres, whereas the
electrons most of the time move at a much larger distance of the order of
picometres up to a few hundred picometres in the valence shell. Thus, the detailed
charge distribution of the nucleus is expected to have negligible influence on the
electronic energy and low-order moments of the electronic charge distribution.
Moreover, a finite-nucleus model will necessarily have to introduce some assump-
tions and parameters pertinent to the specific model employed for the nuclear
structure, and thus to some extent the well-defined mathematical structure of the
point-nucleus model will be destroyed.

* Dedicated to Prof. Dr. Werner Kutzelnigg on occasion of his sixtieth birthday
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The situation is different for relativistic models of electronic structure theory. It
is well known that the solution of the one-particle Dirac-Coulomb equation for
a point-nucleus external potential exhibits a weak singularity at the origin [1]. This
property requires special attention in the practical calculation of a many-electron
system when relativistic effects become important, as is the case already in the first
transition-metal row. For atoms, a well-established method is at hand, namely the
Dirac-Hartree-Fock (DHF) method based on a multi-particle generalization of
the Dirac-Coulomb equation [2, 3] or, more precisely, on second-quantized
generalizations thereof [4-6]. Usually, the problem of the weak singularity is
handled in the corresponding computer codes [7, 8] by the introduction of
a finite-nucleus model, although the fact that the DHF equations in the programs
mentioned above are solved on a grid already provides a regularization mechanism
that also permits to solve a point-nucleus model.

Problems with the singularity are probably more prominent in an expansion
approach to the solution of the DHF equations: A basis set optimization, say in
a basis of Gaussidn functions, will lead to basis functions with very high exponents,
thus trying to mimick the divergence at the origin by means of very steep
Gaussians. These are clearly non-physical and unwanted in a practical calculation,
since “grid points” in the functional space are set in a region that is not important
for the properties one is usually interested in, and thus, at best, computational
effort is wasted. It has therefore been proposed that a finite-nucleus model be used
also in DHF calculations carried out by means of basis expansion techniques [9],
in particular in a basis of Gaussian functions [10-12]. Note that a suitable choice
of the finite-nucleus model, e.g., a uniformly charged sphere, leads to a harmonic
potential at the origin. Thus, we expect rapid convergence of the basis set expan-
sion, since Gaussian functions provide the correct asymptotic behaviour and are
therefore ideally adapted to the problem [3, 10, 13].

An approach alternative to DHF, particularly useful for molecules, is the
reduction of the DHF equations or their second-quantized analogue to operate
only on the electronic degrees of freedom [ 14, 15]. Depending on the scheme that is
being used, diverse problems arise in the case of an external field effected by a point
nucleus.

In the Foldy—-Wouthuysen approach [14], an expansion in powers of the
reciprocal velocity of light is carried out, leading tofincreasingly singular operators
[16], the lowest order of which is given by the so-called mass—velocity term
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p(r) denoting the nuclear charge distribution. The latter operator being itself
extremely singular if a point nucleus, i.e., the nuclear charge distribution p(r) = 6(r),
is used and the former one being not bounded from below, we have to face very
unsatisfactory properties of the Foldy-Wouthuysen wavefunction, which have
been investigated in detail by Kutzelnigg [17]. The individual terms exhibit
considerable sensitivity to the model of the nucleus. This has been investigated for
the expectation value of the Darwin term, using a Gaussian nucleus model [18],
and also recently in a study that also pays attention to the influence of the nuclear
model on the spin—orbit operator and the mass—velocity term [19].
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The Douglas—Kroll transformation [15] does not lead to singular operators like
Egs. (1) or (2), since an expansion of the relativistic free-particle energy operator

E = /p*c?* + m%c4, (3)

which is the reason for the weird spectral properties of (1), is not attempted. Instead,
Douglas and Kroll expand in powers of the external Coulomb potential, thus
arriving at a sum of operators, each one not more singular at the origin than the
Coulomb potential itself. The Douglas—Kroll-transformed Hamiltonian is thus
suitable for practical calculations, making it easy to implement electron correlation
in a spin-free formalism [20, 21] and also in approaches including spin—orbit
coupling [22].

A straightforward basis set optimization with the spin-free no-pair operator,
using a linear combination of atom-centered Gaussians to expand its solution,
leads to high exponents very similar to the DHF case discussed above. In this
publication we therefore describe the implementation of a finite-nucleus model in
the framework of the Douglas—Kroll transformation. We take the gold atom as an
example and develop a “relativistic” basis set, starting from a 17s 12p8d4f Gaussian
basis set optimized with the non-relativistic Schrodinger Hamiltonian [23] by
means of exponent optimization with the relativistic operator in combination with
the finite-nucleus model.

In the following section we briefly review the Douglas—Kroll transformation
and the finite-nucleus model. We proceed to a description of our implementation of
the required integrals and then present practical calculations, introducing the new
basis set and comparing our findings with DHF results obtained with the GRASP
code (General-Purpose Relativistic Atomic Structure Program) [8].

2 Theory
2.1 The relativistic Hamiltonian

We employ the spin-free no-pair Hamiltonian with external-field projectors,
derived from the second-quantized no-pair Hamiltonian [6] by means of a
Douglas-Kroll transformation [15]. Assuming that a spin-averaged description is
appropriate for the case to be considered and that spin—orbit coupling may be
treated by perturbation theory at a later stage, we obtain a Hamiltonian operating
on a one-component (properly antisymmetrized) wavefunction:

H? = z E; + Z V() + Z Ve G, j), 4

i i i<j

with E; the relativistic free-particle kinetic energy operator of Eq. (3), evaluated for
the ith electron, and V(i) and Vi, j) the one- and two-particle potential energy
operators that include spin-free relativistic corrections. Since the relativistic correc-
tions of the two-electron potential are not of importance in the present context and
can be shown to be of negligible influence in the calculation of valence-shell
energies of atoms [21], we neglect then in the sequel and rather consider one-
electron corrections only, using

1
H — Y E + Y VG + Z — (5)
i i i<jlij

as the relativistic Hamiltonian.
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Putting the velocity of light ¢ = 1, the one-electron (nuclear attraction) poten-
tial for electron i is given by

Vite() = — edi[ V() + R,V R 14, (6
- WYGEWT() — ${(WY) E}, (7
with
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Wii(i) is an integral operator with kernel

Vext (pia Pll)

WL (pi, pi) = AiR; — R) A .
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(10)
This operator is evaluated from the matrix elements of the external potential V(i)
between Gaussian functions by means of a matrix technique described elsewhere
[21]. Thus, the implementation of a finite-nucleus model requires modification of
the one-electron Coulomb integrals only, which may subsequently be subjected to
the matrix technique for the evaluation of V;.

2.2 The finite-nucleus model

There are several models for the charge distribution of the nucleus known from
literature. Ishikawa [10] used a uniformly charged sphere with a certain prescribed
radius R*° of the dimension of a few femtometres. In the context of expansions into
Gaussian orbitals it is, however, more convenient to use a Gaussian charge
distribution for the nucleus [18, 117, normalized to integrate to the total nuclear

charge and given by
1\ e

plr) =eZ (E) e~ (11
The decay parameter # is to be connected with the nuclear radius via the standard
deviation ¢ of the Gaussian or the root-mean-square radius R, of the Gaussian.
Matrix elements of the corresponding potential in a basis of Gaussian functions are
readily evaluated, also in the multicentre case. We therefore choose the Gaussian
finite-nucleus model in our development.

The fixing of the width of the Gaussian is open to debate. Visser et al. [11]
propose two methods: First, assume that the extent of the nucleus is given by the
ansatz [24, 25, 7] '

R =roA'3, 12)

with A the atomic mass and r, = 2.27 x 1073, giving R in atomic units. We may
then relate R with the standard deviation of the Gaussian by means of an
adjustable parameter y, R = ya.
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Second, equate the experimental root-mean-square radius R, [26] to the rms
radius of the Gaussian, leading to an expression for the exponent # given by

n=3(Rm) > (13)

The integrals of the potential caused by a Gaussian charge distribution may be
expressed in a form that makes it possible to use conventional two-electron integral
routines for the calculation of its matrix elements between Gaussian functions [11].
However, in the case considered in the present paper, we prefer to reduce the
required integrals directly to simple formulae for the one-electron integrals.

The potential of a charge distribution given by Eq. (11) centred at a point P at
a distance R from this distribution is given by

Ve = — i/ (14

where the error function @ is defined by

2 X
N J o
To evaluate the one-centre nuclear attraction using a finite-nucleus model making
use of a Gaussian charge distribution, we have to calculate the integral

D(x) = e dt. (15)

1= jw i) $i0) V) Px. 16)

The parameters [;, m;, n; and o; characterize the ith function in the Gaussian basis
set:

¢ = N;xhiymizrie~ur”  p=|x|. amn

Defining 2p=1; + I, + my + m, + n; + n, and J = oy + a5, we employ polar
coordinates, isolate the angular part J and obtain

2N1N2 J‘ 2 —ar2 l:f :|
I=J- Pe d(/nr) |rdr (18)
ﬁ 0 f

= J-NN,L,(/n,0). (19)
With the result
_ _
10(\[,5)_25(5“)1,2, Red > —n,Red >0, (20)

it is straightforward to get the working equations

I 8) = XG0+ 2) 1)

4575 + n)*'

1,(/n,8) = ﬁ [1562 + 206 + 811, (22)

I3(/1,0) = ﬁ [1056% + 210627 + 1688y + 487°] 3)
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and

I 5 ..—..—\/Z___ 4 3 2.2
S0 = 3355 (3 [9459° + 28206% + 30245%

+ 17286n° + 38477 . (24)

3 Results and discussion

As a first application of the finite-nucleus model within our relativistic scheme we
report an exponent optimization of a 17s12p8d4f basis set for the gold atom,
optimized previously by means of a straightforward exponent variation at the
non-relativistic SCF (self-consistent field)-Hartree—Fock level [23], making use of
a procedure and an SCF code for atoms known from the literature [27-297]. The
optimization proceeds by direct variation of exponents and a search for a minimum
of the total energy by means of a fit of the calculated values to a polynomial. After
several cycles over all single exponents, a multidimensional (numerical) determina-
tion of the minimum is attempted. This process is repeated until the change in total
energy is less than 10~ ° Hartrees.

In our instance we employ the same code, modified to comprise the spin-free
no-pair operator with external-field projectors and the Gaussian finite-nucleus
model as described in Sect. 2. We start our optimization with the nonrelativistic
17512p8d4f basis set published earlier, which we tabulate again for reference in
Table 1, along with the results of the relativistic optimization.

We use two different ansétze for the exponent 4 in Eq. (12), the first one based
on the experimental rms radius of the *°7Au nucleus with RI% = 5.3 fm being used
for the optimization. The second value of RIjs = 6.36 fm corresponding to a 20%
increase of the rms radius, has been provided in order to give a feeling for the
influence of the nuclear radius.

Moreover, we attempted an exponent optimization with the relativistic oper-
ator and the point-nucleus model. In this instance it did not turn out possible to
obtain a set of exponents describing a stationary point of the energy with respect to
exponent variation, the total energy still decreasing in the third digit after the
decimal point for the exponents given in Table 1.

An inspection of this table shows that the exponent optimization procedure
making use of the point nucleus indeed tries to describe a singularity at the origin
within the restrictions of a finite basis set, as the highest exponents in the space of
s functions developed to about 50 times the value we started out with. Clearly, this
method of exponent optimization is not a feasible one, since it will not converge to
a stage with an essentially stationary result. Moreover, as discussed in the introdue-
tion, the large exponents are not required to describe the medium range of the wave
function, which is determining the value of the energies, and also immaterial for
such first-order properties that depend on a low (absolute) power of the distance
from the nucleus, as many of the interesting properties do.

On the other hand, the optimization procedure with the Gaussian nucleus
converged to a set of exponents corresponding to a point with a, for practical
purposes, stationary energy. The resulting exponents obtained with RT = 5.3 fm
are also given in Table 1.

We observe that the inner (and outer) s exponents are larger than their
non-relativistic counterparts, as one should expect from the general properties of
a relativistic orbital, but in this instance only by a factor of 10 for the highest



A finite-nucleus model for relativisitic electronic structure calculations

Table 1. Exponents of the (17512p8d4f’) basis set for the gold atom

Non-relativistic
optimization
point nucleus

Relativistic
optimization
point nucleus

Relativistic
optimization
Gaussian nucleus

S exponents

3095420.0
446260.0
99928.8
282749
9358.39
3491.38
1429.50
621.277
233.439
113.614
58.4805
26.2455
13.3527
5.15347
1.64510
0.730473
0.054579

p exponents

23072.8
5459.12
1773.84

671.791
285.457
127.800
55.2681
26.1332
10.7993
4.95651
1.56922
0.580380

d exponents

816.722
243.203
90.5378
36.8619
14.0038
5.54660
1.51102
0.429674

f exponents

86.8244

27.7504
9.91205
3.33817

166643000.0
17991400.0
3180390.0
715743.0
187598.0
54984.4
17640.7
6088.72
2229.58
855.227
286.375
122.841
37.2398
19.9257
6.16327
1.08749
0.078608

134701.0
20969.3
5072.08
1561.95

559.21
220.278
91.4179
38.6095
16.1506
6.65501
1.96030
0.737265

933.897
267.029
97.0717
38.8019
14.5881
5.70114
1.52155
0.42022

85.719

27.0547
9.55937
3.16991

29077400.0
4665930.0
1059530.0

281273.0
84311.2
27756.7

984595
3713.94
1482.82
627.142
241.530
108.298
34.6885
16.49687
6.091290
1.087940
0.086209

113988.0
18303.6
4556.52
1434.59
520.969
206.811
85.0870
36.6366
15.0214
6.39604
1.87306
0.704253

944.088
268.492
97.1813
38.7422
14.5075
5.67105
1.51099
0.416578

85.7235

27.0580
9.56122
3.17190

189
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exponent. We expect higher exponents in the relativistic finite-nucleus case, since
the relativistic s orbital in this instance has considerably larger amplitude for small
distances from the nucleus than its nonrelativistic counterpart [9]. The p exponents
are likewise shifted corresponding to a tighter charge distribution, whereas the
outer d and fexponents describe a slightly more diffuse charge distribution than in
the non-relativistic case, again in line with the expectations derived from known
relativistic effects on orbital radii.

The total energies, orbital energies, (r?>> and {(r~!) expectation values are
given for some inner-shell and the valence-shell orbitals in Tables 2-4. The data
obtained from the GRASP program will be used as a benchmark. Note that the
point-nucleus values differ slightly from those published in [23], since in this
publication a molecular code making use of six-component cartesian d functions
and ten-component cartesian ffunctions has been employed, whereas in the present
case contaminants are not present.

A comparison of the numerical nonrelativistic results with the basis set results
shows that despite a quite satisfactory total energy, orbital energies and charge
distributions calculated with the optimized 17s512p8d4f non-relativistic point-
nucleus basis set [23] show errors of the order of 10%, which is quite unacceptable.
This deficiency may be traced to inflexibility in the valence shell, in particular of
the d and f symmetries. From Table 2 we find that already the inclusion of
a semidiffuse d function with exponent 0.11 bohr =2 leads to considerable improve-
ment. This function may not be obtained by optimization of the total energy at the
Hartree—Fock level, because its influence on the total energy is negligible, and
a straightforward optimization with an additional d function rather shifts the
values of the d space uniformly to higher values, which leads to lower energies for
the inner-shell d orbitals.

The semidiffuse function has instead been determined by optimizing the cor-
related ground state energy of the Au S state, and in fact it has been known for
a long time that for satisfactory calculations on transition metals a semidiffuse
d function, often dubbed Hay’s d function [ 30], has to be included at the correlated
level. This function turns out to be of importance even at the SCF level, and its
large (indirect) influence even on the 6s shell is remarkable. The orbital energies
(except for the 4f shell, which still lacks some flexibility) are now in very good
agreement (better than 1%) with the benchmark results.

The (r?)¢, expectation value, however, still indicates deficiencies in the s shell.
This is also reflected in the ionization potentials and electron affinities calculated
with this basis set [23]. In order to overcome these problems, we introduced in
a recent paper [31] a more flexible basis set, which is obtained from the nonrelativ-
istic one given in Table 1 by deleting all functions with exponents less than
3 bohr~2 and augmenting this set by an approximately even-tempered series of
exponents providing a flexible valence shell. The latter exponents are given in
Table 5, and we have included also results for this extended basis set in Tables 2—4.
It is obvious that this basis set (dubbed NRPx) shows excellent agreement with
GRASP results.

We employ the same recipe as described above to generate extended basis sets RPx
and RGx for the optimization carried out in the framework of a relativistic point
nucleus and a relativistic Gaussian nucleus. The nonrelativistic calculations employing
a Gaussian nucleus show practically no difference to the point-nucleus results, cor-
roborating the expectation that a point-nucleus theory is quite adequate in this case.

We now turn to a discussion of the result obtained from relativistic scalar
calculations. The relativistic contraction of the s and p orbitals and the expansion
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Table 5. Valence-shell exponents for the extended basis sets

s functions p functions d functions ffunctions
2.100 2.250 2.200 1.100
0.840 1.000 0.880 0.420
0.340 0.455 0.350 0.170
0.140 0.210 0.140

0.050 0.100 0.056

0.022 0.046

0.010 0.020

of the d and f shells is reproduced in all cases, comparing the corresponding
calculations for a fixed basis set, but again the magnitude of the effect is under-
estimated using the RP and RG basis sets due to basis set inflexibility. This is
mirrored especially in the poor result obtained with the relativistic point nucleus
basis set in the nonrelativistic calculation, reflecting the optimization for a much
more compact charge distribution. Again, the situation is much improved by
inclusion of Hay’s d function. The {r?)s; value is now excellent, but <{r~1>;,
overshoots and shows, in line with the {(r?);, result, that an extended basis set is
required for quantitative agreement. Note, however, that {r*), is well described by
the RP basis set. The extended basis sets with either type of core basis set
(NRPx, RPx,RGgx) all lead to very good agreement with the benchmark results in
the valence shell, and it is in fact not evident which one is superior.

For core orbitals the {r?), is too small in all cases, and <+~ 1>, and {1,
are too large with either basis set. This result (and the comparatively large
discrepancies for the DHF total energies and the inner-shell orbital energies) is due
to the fact that the two-electron terms have not been corrected in the present
calculation. This may be done in the framework of the Douglas-Kroll transforma-
tion, but will not change the valence-shell results considerably [21].

Finally, turning to the finite-nucleus calculations, we find results similar to
those obtained for the point-nucleus calculations. The only notable exception is
{r*Yes, which for the RG set is slightly different in both cases due to basis set
deficiencies.

Summarizing our results, we find that for a flexible basis set the mode of
optimization is immaterial. NRPx, PRx and RGx give all very good results. Of
course, an optimization using the point nucleus is not advisable because of stow
convergence and the development of unnecessarily high exponents, and thus for an
optimization in the framework of a relativistic theory a finite nucleus should be
used. Our results indicate, however, that a sufficiently flexible basis set based on
a nonrelativistic exponent optimization is quite satisfactory.

4 Conclusion

The Gaussian nucleus model may be favourably used to devise a procedure for
exponent optimization using the Douglas—Kroll-transformed no-pair Hamil-
tonian. A point-nucleus model used in this context does not lead to a convergent
optimization procedure and develops very high exponents, just as known from
Dirac-Hartree-Fock calculations.
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The 17512p8d4f basis set as obtained from the optimization procedure does not
provide enough flexibility to yield orbital energies and {r") expectation values in
satisfactory agreement with numerical (GRASP) benchmark calculations. We
expect that this will be true until very large basis sets are used, because the
important semidiffuse and diffuse functions are disfavoured by an optimization
procedure based on the Hartree—Fock energy.

We rather propose to build a flexible valence basis set by means of an
even-tempered series of exponents starting with a suitable outer-core exponent
obtained in the optimization procedure. This recipe also allows for inclusion of
correlation functions, negative ion functions and Rydberg functions, as needed for
post-SCF calculations.

Proceeding along these lines, we obtained basis sets which yield values for
valence shell data in very good agreement (better than 1%) with GRASP results.
Inner-shell results in the relativistic case deteriorate because of the approximations
that have been made, in particular the neglect of the relativistic correction of the
two-electron integrals.

The three extended basis sets obtained in this way from the nonrelativistic,
relativistic point nucleus and relativistic Gaussian nucleus basis set lead to very
similar results in the relativistic calculations. We thus conclude that for calcu-
lations with the Douglas-Kroll-transformed no-pair Hamiltonian a relativistic
optimization is not required (unless the valence basis set that can be afforded is
small or only of medium size) and that a nonrelativistic basis set of moderate size
for inner and outer core, augmented by a large and flexible valence-shell basis set, is
sufficient to obtain valence orbital energies and {#") expectation values as well as
other properties depending on the valence shell with excellent accuracy. This is in
line with previous findings [31]. Note, however, that relativistic contraction coeffi-
cients are markedly different from their nonrelativistic counterparts and must be
determined from a relativistic atomic SCF calculation.
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